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Fig. 3. The normalized lumped lattice network: Cl= 6.7517CJC- 1 F, Ll=

0.0561uC-1 H, R2 = 4 X 10-5 (2, aud .L2 = 0.09410.-1 H
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Fig. 4. The input impedarwe of the originat network versus the input lmped-

auce of the lumped lattice network in the bandwidth.

where u is the unit impulse function, and the residue A is equal
to the area under RI(u).

The reactance of the cross-arm impedance is clearly that of art

inductor. Although sudden changes also occur in the resistive

part of the cross arm, this cannot be attributed to the inductor.

The value of the resistive part, however, is basically constant in

the bandwidth except for this sudden change at resonance. Con-

sequently, assuming small losses, the impedance of this arm can

be realized in the bandwidth by an inductor in series with a

resistor; viz.,

Z2(U) =R2+juL2. (5)

The evahtation of the elements of the lumped lattice network is

rather straightforward. First, the area under RI(u) is determined

and assigned to the residue A. The capacitor Cl is then found as

(6)

while the inductor L1 is found from (3). Furthermore, the induc-

tor L2 of the cross arm is readily determined as the slope of

Xz ( u ), or more simply as

x2(@o)
L2=—.

@o
(7)

Finally, the resistor R z is assigned the constant value it has in

the bandwidth. The normalized lumped lattice network obtained

is shown in Fig. 3. The input impedance of the developed lumped

network is shown in Fig. 4, where it can be seen that it agrees

rather well with the input impedance of the original network in
the bandwidth. In passing, it is noted that other choices of R ~,

such as R2 ( CJo) or the area under R2 ( o) in the bandwidth

divided by the bandwidth, change very little of the input imped-

ance of the lumped lattice network.

IV. SUMMARY

It has been shown in this paper that the lattice network cart be

used to overcome the difficulties associated with the T network

representation of symmetrical configurations of lossy dielectric

posts in a rectangular waveguide. If resonant, a lattice network of

lumped elements can be developed to approximately realize the

impedance matrix of the posts in the bandwidth. This lumped

representation is particularly useful in the design of microwave

filters employing dielectric posts in a rectangular waveguide.
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Attenuation Distortion of Transient

Signals in Mlcra,strip

TONY LEUNG, STUDENT ME UBER, IEEE, AND

CONSTANTINE A. BALANI S, FELLOW,IEEE

Abstract — Attenuation dktortion, and combinations of dispersion and

attenuation distortions, of transient signals in microstrip lines are investi-

gated. Conduction losses are considered for the geueraf case where the

strip conductor resistivity is different from that of the ground plane.

Dielectric losses are examined for commonly used isotropic substrates.

Attenuation and dispersion distortions of short pnlses are shovwr to vary as

microstrip and pulse parameters are chauged.

I. INTRODUCTION

The analysis of transient signal behavior in microstnp lines is

essential for the design of MIC’S that operate ,at high switching

speeds or high frequencies. This behavior has been investigated in

the past only for the case of distortions due to dispersion [1]-[3].

Analyzing dispersion distortion is important because it signifi-
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Fig 1. Gaussian pulse attenuation and dispersion as functions of strip width

at L = 5 in (12.7 cm) along a microstrip hne

cantly alters the form of a pulse as it propagates down the line.

Similarly, attenuation distortion is vitaf because it also changes

the form of a propagating pulse, but in a way different from

dispersion distortion. Pulse distortion characteristics have been

examined for waveguides and other guiding structures with dis-

persion and attenuation [4], [5]. For microstnp, however, attenua-

tion distortion has not yet been examined.

This paper considers the attenuation distortion of short pulses

propagating along microstrip lines. Attention is also given to

dispersion distortion of pulses. The attenuation mechanisms here

at-e due to conduction and dielectric losses. Radiation losses were

not considered because they are significant only in microstnp

lines with discontinuities [6]. Conduction losses are treated for

cases where the strip conductor resistivity is different from that

of the ground plane. The dielectric substrates considered here are

isotropic materials with relatively high loss characteristics (such

as duroids). Results show that the amount of pulse distortion

(compared to distortionless pulses) vanes as microstrip and pulse

parameters change. Microstrip parameters include geometry di-

mensions (i.e., strip width and substrate height) and substrate

dielectric constant (Fig. 1), whereas pulse parameters include

pulse width (in picosecond) and pulse rise time (pulse shape).

The effect of the strip thickness is not shown here since it was

found to have negligible significance in both attenuation and

dispersion distortions (a constant strip thickness of 0.00067 in is

used here, which is the thickness of 1/2 oz. copper).

II. FORMULATION

The attenuation constant for a continuous microstrip line can

be written as [7] (assuming no radiation losses)

a(@) =ac(u)+ ad(u) (1)

where aC( O) and ad(u) represent, respectively, the conduction

and dielectric losses. If we assume that the surface resistivity of

the strip conductor ( R,l) is different from the surface resistivity

of the ground plane ( R,z ) (which is common in many applica-

tions), then following the procedure in [8] and [9], a,,(o) can be

expressed as

w 1
—<—:
h 2?7

CYc(u) = &(’-(:)’}(Rs’:R’2+Rl$
[“ ‘+:+x:)]} (U::::fi)‘2a)

(xc(u) = +(:+:ln[z”’(:+og’)1)-’{:

‘{[Rs’:Rs21[1-+l+RJl:[l+:ln(:ll)
(U::::th]‘2C)

where

R,l

R .?’2

:

t

Z.
M.’

PI,’

=]G>
‘m=
width of the strip conductor,

height of the dielectric substrate,

thickness of the stri~ conductor,

(2d)

(2e)

characteristic impedance of the microstnp line,

permeability of the center strip and ground conductors,

respectively,

resistivity of the center strip and ground conductors,

respectively,

frequency in Hz,

and w‘ is the effective strip width which accounts for the nonzero

strip thickness and is given in [8] and [9]. In computing ac ( o ),

the line conductors are assumed to be perfectly smooth with no

losses due to surface roughness. Typical values for the surface

resistivity are (2.61 X 10–7)~ for copper and (3.26X 10– ‘)~ for

aluminum.
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The expression for ad(u) can be written as [7], [10]

c,eff(o) -1 tanti

– (fl::th) ‘3)a’(”)=%-%” ‘r-’ ‘o

where

(, relative dielectric constant of the substrate

C,C,,(0) effective dielectric constant at j’ = O,

A. free-space wavelength,

tan 8 loss tangent of the substrate.

The loss tangent here is assumed to be constant with frequency,

Typical values of tantl are 0.0015 for 6010 RT/duroid (e, = 10.2)

and 0.0005 for 5870 RT/duroid (c, = 2.33).

The dispersion distortions of pukes are calculated from

Pramanick and Bhartia’s model [11] for the effective dielectric

constant c,=,,(f’) since figorous solutions for C,eff(f), such as the
full-wave analyses [12], [13], require time-consuming computa-

tions. In addition, Pramanick and Bhartia’s model for c,.,,(~) is

shown to be accurate compared to other quasi-static formulas [1].

The computations for the distorted waveforms at a distance L

along a microstrip line are made using [1]

V(t,z= L)=; j_+mV(u, z = O) e[Jm’-y(o)Ll dti (4a)
m

where

y(o) =CY(@)+j~(@) (4b)

13(@) =:/~ (4C)

and V( a, z = O) is the Fourier transform of the pulse at the

reference point (L= O) of the line.

III. NUMERICAL RESULTS AND DISCUSSION

Fig. l(a) and (b) shows 20-picosecond-wide (at the half magni-

tude points) Gaussian pulses propagating on a microstrip line

with a strip conductor of copper, a ground plane of aluminum,

and a substrate of 6010 RT/duroid. This figure illustrates the

changes in distortions (compared to the distortionless pulse) as

the strip width is increased from 0.001 in to 0.01 in. The conduc-

tion losses become smaller because the current density in the

strip conductor decreases as the strip width increases (for a given

amount of current). This causes lower ohmic losses. However, the

dielectric losses are not changed. In fact, as seen in Figs. 1 and 2,

the geometry parameters do not affect the dielectric losses, be-

cause (3) is only weakly dependent upon the strip width and

substrate height. The dispersion distortions become greater, be-

cause a wider strip conductor decreases the inflection frequency

of the effective dielectric constant [11], which means that more

high-frequency components of the puke travel with a lower

(compared to the low-frequency components) phase velocity [i.e.,

r
up = c/ %,,, (”0 1.

For t e pulse distortions exhibited in Fig. 2(a) and (b), the

substrate height is changed from 0.004 in to 0.01 in wi~ w

remaining constant. Again notice that the conduction losses are

diminished and the dispersion distortions are greater. In this case

the conduction losses are smaller because Z. becomes larger as a

function of decreasing w/h [7]. A greater value of ZO means that

for a given potential between the strip conductor and ground

plane, the current flowing along the line (and the ohmic losses)

will diminish. The dispersion distortions increase because a larger

value for the substrate height also decreases the inflection

frequency of the effective dielectric constant (and with results
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Fig. 2. Gaussian pulse attenuation and dispersion as functions of substrate
height at L = 5 in (12.7 cm) aton~ a mlcrostrip line.

similar to increasing the strip width, as comparing Figs. l(b) and

2(b) shows).

Fig. 3(a) and (b) displays distorted triangular pulses as the

substrate dielectric constant increases from 2.33 to 10.2. Since the

two duroid materials have different loss tangents, a tan 3 = 0.0015

was assumed for both so that the effect of changing c, can be

isolated. Note that both types of 10SSCSare enhanced. The con-

duction loss increase is explained by the fact that Z. decreases

monotonically as a function of increasing c,, causing the strip

current and ohmic losses to become larger in magnitude. The

dielectric losses increase because a larger c, confines more of the

electric field lines (from the strip conductor to the ground plane)

to the substrate. This meater confinement intensifies the field

strength within the substrate, which in turn causes more dissipa-

tion of the electric field energy of the pulse. A larger c, also

increases dispersion distortions. an effect that amin involves the. .,
electric field lines. These fields become more discontinuous as :,

increases, giving rise to a greater number of surface waves

propagating along the microstrip line. These surface waves cause

the effective dielectric constant, and the phase velocity, to be-

come more nonlinear.

The effects of changing the pulse width and the pulse rise time

are approximately the same. Fig. 4(a) and (b) shows a decrease in

the square pulse width (from 20 to 10 picosecond) while Fig.

5(a) and (b) shows a change from a Gaussian to a stepped-square

pulse. In Fig. 4(a) and (b) the conduction and dielectric losses, as

well as dispersion distortions, are eahanced. The increase in

dispersion distortions here is seen as a drop in magnitude of the

first peak of the dispersed pulse (from part (a) to part (b)). In

Fig. 5(a) and (b) the stepped-square pulses (compared to the

Gaussian pulses) show a slight increase in both types of losses.
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Fig. 4. Square pulse attenuation and dispersion as functions of pulse width
at L = 3 in (7.62 cm) along a microstrip hne
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Fig. 5. Comparison of attenuation apd dispersion of Gaussian and stepped-
square pulses as functions of puke shape at L = 4 in (10.16 cm) along a
mlcrostnp line.

The dispersion distortions, however, are much more pronounced

in the stepped-square pulse. In both figures here the bandwidth

of the transient signaf is increased. Since the conduction and

dielectric loss constants increase monotonically as a function of

increasing frequency, it is clear that a wider bandwidth means

more high-frequency components being attenuated and, subse-

quently, more total losses. A wider bandwidth also means that

more high-frequency components having different phase veloci-

ties (than the low-frequency components) are present, which

creates a more dispersed pulse.

IV. CONCLUSIONS

Attenuation and dispersion distortions of short electric pulses

are examined for microstrip lines: Conduction and dielectric

losses were considered for microstrip lines with common iso-

tropic substrates and with different resistivities for the strip

conductor and the ground plane. Results show that attenuation

and dispersion distortions change (from the distortionless pulse)

by varying the strip width, subs$rate height, substrate dielectric

constant, pulse width, and pulse rise time.
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A Spectral Iterative Technique with

Gram-Schmidt Orthogonalization

PETER M. VAN DEN BERG AND WALTER J. GHIJSEN

,4bstracf — Iterative schemes based on the minimization of the integrated

square error are discussed. In each iteration a basis function is generated

in such a way that it is linearly related to the residual error of the previous

iteration. A complete orthogonalization of all of these basis functions leads

to an optimal convergent” scJteme for some choices of the basis functions.

In order to reduce the computer storage needed to store all of the basis

functions, we present an incomplete orthogonalization scheme that still

yields an efficient computational method. In this scheme a limited number

of basis functions has to be stored. Some numericaf resnlts with respect to

some representative field problems illustrate the performance of the vari-

ous versions of the iterative schemes suggested here.

I. INTRODUCTION

The spectral iterative technique (SIT), developed by Bojarski

[1] and Ko and Mittra [2], has been applied to a wide class of

radiation and scattering problems. Convergence problems arising

in the spectral iterative technique, which are serious at times,

have been eliminated by van den Berg [3] by minimizing the

integrated square error in the boundary conditions on the perti-

nent radiating or scattering object. The convergence has substan-

tially been improved by using all available functions of the

previous iteration in the minimization procedure of each iteration

(CST3-scheme [4]). In each iteration of the iterative schemes a

basis function is generated in such a way that it is linearly related

Manuscript received May 4, 1987; revised October 14, 1987.
P. M. van den Berg ii with the Laboratory of Electromagneoc Research,

Department of ElectncaJ Engineering, Delft University of Technology, P.O
Box 5031, 2600 GA Delft, The Netherlands.

W. J. Ghijsen was with the Department of Electrical Engineering, Delft
University of Technology, Delft, The Netherlands, he is now with Phormn,
Inc., Simsbury CT 06070.

IEEE Log Number 8719204.

4, APRfL 1988 769

to the residual error of the previous iteration. MacKay and

McCowen [5] have suggested a full orthogonalization of all basis

functions in order to improve the convergence in an optimum

way. This requires all basis functions to be stored in the com-

puter; hence sufficient computer memory must be available. The

latter authors therefore suggest that a complete orthogonalization

may not be necessary and that the number of basis functions to

be orthogonalized can be limited to a small number. However, in

this case, the convergence can decrease dramatically after a

number of iterations.

In the present paper we discuss an incomplete orthogonaliza-

tion scheme where we take into account a limited number of

basis functions generated in the last few iterations; however, in

contrast to [5], we also use the appropriate estimate of one of the

previous iterations as a function to which all the relevant basis

functions have to be orthogonalized. This maint~ns the speed of

convergence. Further, in one of the most simple forms, the latter

scheme turns out to be equivalent to the contrast-source- tmnca-

tion technique CST3 [4]. The latter is a truly iterative technique,

because it needs the functions of the previous iteration only.

II. Tm OPERATOR J3QUATION

We consider a field computation problem in terms of an

integral equation of the form [4]

~~(x-x’)f(x’)~x’= dx), whenx=D (1)
D

where D is the domain of observation. Then, (1) is equivalent to

Kf =g, when x ED. (2)

Further, we introduce the inner product of two functions f and g

as (the bar denotes a complex conjugate)

(f! g)= JDf(Mx) ~“-$ (3)

while the norm of a function f is defined as IIf II = (f, f )1/’2. We

further introduce the characteristic function Xp ( x) = 1 when

x = D, and XD(X) = O when x ● D’, where D’ is the subdomain

outside the domain D of observation.

Introducing the spatial Fourier transform of a function f as

~= F{ f }, the Fourier transform of the operator expression Kf of

(~) can be written as the product clf the Fourier transforms

K = F{ K( x)} and F{ XD f }; thus the (operator expression can be

written as

Kf =F-l{J&{xl)f }}. (4)

IIL ITERATIVE APPROXIMATION WITH GRAM– SCHMIDT

ORTHOGONALIZArION

In our iterative approximation we construct a sequence of

functions {f., n = 0,1.2,3, . . . } such that the norm of the resid-

wd in the operator eq. (2),

ERRn = (rfi, rn)l/2, with rn = Kfn – g (5)

decreases with increasing n in an optimum way. The procedure

starts with an initial guess f. with the associated residual r.. At

each step of the iterative procedure, we write

f. =fn-1+ %f;, ~==1,2,3, . . . (6)

where, in each step, f; is a correction function and where the

complex parameter a. is chosen such that the error ERR. is

0018-9480/88/0400-0769 $01.00 Q1988 IEEE


