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Fig. 3. The normalized lumped lattice network: C; = 6.7517w;

F, L =
00561, ! H, R, = 4X107° Q, and I, = 0.0941w; ! H
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Fig. 4. The input impedance of the original network versus the input imped-
ance of the lumped lattice network in the bandwidth.

where u is the unit impulse function, and the residue 4 is equal
to the area under R, (w).

The reactance of the cross-arm impedance is clearly that of an
inductor. Although sudden changes also occur in the resistive
part of the cross arm, this cannot be attributed to the inductor.
The value of the resistive part, however, is basically constant in
the bandwidth except for this sudden change at resonance. Con-
sequently, assuming small losses, the impedance of this arm can
be realized in the bandwidth by an inductor in series with a
resistor; viz.,

Z,(w) =R, + joL,. (%)
The evaluation of the elements of the lumped lattice network is

rather straightforward. First, the area under R;(w) is determined
and assigned to the residue A. The capacitor C; is then found as
o

=51 (6)

while the inductor L, is found from (3). Furthermore, the induc-
tor L, of the cross arm is readily determined as the slope of
X, (w), or more simply as

G

- Xz(‘*’o)
Wy )

L (7
Finally, the resistor R, is assigned the constant valuc it has in
the bandwidth. The normalized lumped lattice network obtained
is shown in Fig. 3. The input impedance of the developed lumped
network is shown in Fig. 4, where it can be seen that it agrees

rather well with the input impedance of the original network in
the bandwidth. In passing, it is noted that other choices of R,
such as R,(w,) or the area under R,(w) in the bandwidth
divided by the bandwidth, change very little of the input imped-
ance of the lumped lattice network.

IV. SUMMARY

It has been shown in this paper that the lattice network can be
used to overcome the difficulties associated with the T network
representation of symmetrical configurations of lossy dielectric
posts in a rectangular waveguide. If resonant, a lattice network of
lumped elements can be developed to approximately realize the
impedance matrix of the posts in the bandwidth. This lumped
representation is particularly useful in the design of microwave
filters employing dielectric posts in a rectangular waveguide.
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Attenuation Distortion of Transient
Signals in Microstrip

TONY LEUNG, STUDENT MEMBER, IEEE, AND
CONSTANTINE A. BALANIS, FELLOW, IEEE

Abstract — Attenuation distortion, and combinations of dispersion and
attenuation distortions, of transient signals in microstrip lines are investi-
gated. Conduction losses are considered for the general case where the
strip conductor resistivity is different from that of the ground plane.
Dielectric losses are examined for commonly used isotropic substrates.
Attenuation and dispersion distortions of short pulses are shown to vary as
microstrip and pulse parameters are changed.

I. INTRODUCTION

The analysis of transient signal behavior in microstrip lines is
essential for the design of MIC’s that operate at high switching
speeds or high frequencies. This behavior has been investigated in
the past only for the case of distortions due to dispersion [1]-{3].
Analyzing dispersion distortion is important because it signifi-
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Fig 1. Gaussian pulse attenuation and dispersion as functions of strip width

at L =51in (12.7 cm) along a microstrip line

cantly alters the form of a pulse as it propagates down the line.
Similarly, attenuation distortion is vital because it also changes
the form of a propagating pulse, but in a way different from
dispersion distortion. Pulse distortion characteristics have been
examined for waveguides and other guiding structures with dis-
persion and attenuation [4], [5]. For microstrip, however, attenua-
tion distortion has not yet been examined.

This paper considers the attenuation distortion of short pulses
propagating along microstrip lines. Attention is also given to
dispersion distortion of pulses. The attenuation mechanisms here
are due to conduction and dielectric losses. Radiation losses were
not considered because they are significant only in microstrip
lines with discontinuities [6]. Conduction losses are treated for
cases where the strip conductor resistivity is different from that
of the ground plane. The dielectric substrates considered here are
isotropic materials with relatively high loss characteristics (such
as duroids). Results show that the amount of pulse distortion
(compared to distortionless pulses) varies as microstrip and pulse
parameters change. Microstrip parameters include geometry di-
mensions (i.e., strip width and substrate height) and substrate
dielectric constant (Fig. 1), whereas pulse parameters include
pulse width (in picoseconds) and pulse rise time (pulse shape).
The effect of the strip thickness is not shown here since it was
found to have negligible significance in both attenuation and
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dispersion distortions (a constant strip thickness of 0.00067 in is
used here, which is the thickness of 1/2 oz. copper).

II. FORMULATION

The attenuation constant for a continuous microstrip line can
be written as [7] (assuming no radiation losses)

a(w) =a (@) +a,(w) (1)

where «.(w) and a,(w) represent, respectively, the conduction
and dielectric losses. If we assume that the surface resistivity of
the strip conductor (R,,) is different from the surface resistivity
of the ground plane (R,,) (which is common in many applica-
tions), then following the procedure in [8] and [9], &.(w) can be
expressed as

w 1
—_——
h 2«

1 w2\ (R,+ R, h
a,(w) = -l T R
2aZyh 4h 2 w’

t 1 4aw nepers
[ Tnl )] (22
W T t unit length
Rsl + Rsl

1 w’'\? [ t ]
1-|— 1-
WZOh{ (4h) }{ 2 aw’
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where

=y7fuer,
Ry =y7fuse,,

w width of the strip conductor,

h height of the dielectric substrate,

t thickness of the strip conductor,

Z, characteristic impedance of the microstrip line,

(2d)
(2¢)

By, permeability of the center strip and ground conductors,
respectively,

py, resistivity of the center strip and ground conductors,
respectively,

f frequency in Hz,

and w’ is the effective strip width which accounts for the nonzero
strip thickness and is given in [8] and [9]. In computing a_(w),
the line conductors are assumed to be perfectly smooth with no
losses due to surface roughness. Typical values for the surface
resistivity are (2.61 107 7),/f for copper and (3.26 X10~")y/f for
aluminum.

)
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The expression for a,(w) can be written as [7], [10]

€, €, (0)—1 tand nepers
au(0) =7 SO ()
€, (0) €, —1 Ay unit length
where )
€, relative dielectric constant of the substrate,
€, (0) effective dielectric constant at f =0,
0 free-space wavelength,
tand loss tangent of the substrate.

The loss tangent here is assumed to be constant with frequency.
Typical values of tand are 0.0015 for 6010 RT/duroid (e, =10.2)
and 0.0005 for 5870 RT/duroid (e, = 2.33).

The dispersion distortions of pulses are calculated from
Pramanick and Bhartia’s model [11] for the effective dielectric
constant €, (f) since rigorous solutions for €, . (f), such as the
full-wave analyses [12], [13], require time-consuming computa-
tions. In addition, Pramanick and Bhartia’s model for €. (f)is
shown to be accurate compared to other quasi-static formulas [1].

The computations for the distorted waveforms at a distance L
along a microstrip line are made using [1]

V(t z=L)=i +°°V(w z=0) Ler—y()L] 4 4
’ 2a/_o ’ € “ (a)

where
v(0) = a(@) + jB(w) (4b)
B(0) == e, (/) (49)

" and V(w,z=0) is the Fourier transform of the pulse at the
reference point (L = 0) of the line.

III. NUMERICAL RESULTS AND DISCUSSION

Fig. 1(a) and (b) shows 20-picosecond-wide (at the half magni-
tude points) Gaussian pulses propagating on a microstrip line
with a strip conductor of copper, a ground plane of aluminum,
and a substrate of 6010 RT/duroid. This figure illustrates the
changes in distortions (compared to the distortionless pulse) as
the strip width is increased from 0.001 in to 0.01 in. The conduc-
tion losses become smaller because the current density in the
strip conductor decreases as the strip width increases (for a given
amount of current). This causes lower ohmic losses. However, the
dielectric losses are not changed. In fact, as seen in Figs. 1 and 2,
the geometry parameters do not affect the dielectric losses, be-
cause (3) is only weakly dependent upon the strip width and
substrate height. The dispersion distortions become greater, be-
cause a wider strip conductor decreases the inflection frequency
of the effective dielectric constant [11], which means that more
high-frequency components of the pulse travel with a lower
(compared to the low-frequency components) phase velocity [i.e.,
0= /e (1) )

For the pulse distortions exhibited in Fig. 2(a) and (b), the
substrate height is changed from 0.004 in to 0.01 in with w
remaining constant. Again notice that the conduction losses are
diminished and the dispersion distortions are greater. In this case
the conduction losses are smaller because Z; becomes larger as a
function of decreasing w/h [7]. A greater value of Z, means that
for a given potential between the strip conductor and ground
plane, the current flowing along the line (and the ohmic losses)
will diminish. The dispersion distortions increase because a larger
value for the substrate height also decreases the inflection
frequency of the effective dielectric constant (and with results
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Fig. 2. Gaussian pulse attenuation and dispersion as functions of substrate
height at L =5 in (12.7 cm) along a microstrip line.

similar to increasing the strip width, as comparing Figs. 1(b) and
2(b) shows).

Fig. 3(a) and (b) displays distorted triangular pulses as the
substrate dielectric constant increases from 2.33 to 10.2. Since the
twa duroid materials have different loss tangerits, a tan 8 = 0.0015
was assumed for both so that the effect of changing €, can be
isolated. Note that both types of losses are enhanced. The con-
duction loss increase is explained by the fact that Z, decreases
monotonically as a function of increasing ¢,, causing the strip
current and ohmic losses to become larger in magnitude. The
dielectric losses increase because a larger ¢, confines more of the
electric field lines (from the strip conductor to the ground plane)
to the substrate. This greater confinement intensifies the field
strength within the substrate, which in turn causes more dissipa-
tion of the electric field energy of the pulse. A larger €, also
increases dispersion distortions, an effect that again involves the
electric field lines. These fields become more discontinuous as ¢,
increases, giving rise to a greater number of surface waves
propagating along the microstrip line. These surface waves cause
the effective dielectric constant, and the phase velocity, to be-
come more nonlinear.

The effects of changing the pulse width and the pulse rise time
are approximately the same. Fig. 4(a) and (b) shows a decrease in
the square pulse width (from 20 to 10 picoseconds) while Fig.
5(a) and (b) shows a change from a Gaussian to a stepped-square
pulse. In Fig. 4(a) and (b) the conduction and dielectric losses, as
well as dispersion distortions, are enhanced. The increase in
dispersion distortions here is seen as a drop in magnitude of the
first peak of the dispersed pulse (from part (a) to part (b)). In
Fig. 5(a) and (b) the stepped-square pulses (compared to the
Gaussian pulses) show a slight increase in both types of losses.
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The dispersion distortions, however, are much more pronounced
in the stepped-square pulse. In both figures here the bandwidth
of the transient signal is increased. Since the conduction and
dielectric loss constants increase monotonically as a function of
increasing frequency, it is clear that a wider bandwidth means
more high-frequency components being attenuated and, subse-
quently, more total losses. A wider bandwidth also means that
more high-frequency components having different phase veloci-
ties (than the low-frequency components) are present, which
creates a more dispersed pulse.

IV. CONCLUSIONS

Attenuation and dispersion distortions of short electric pulses
are examined for microstrip lines. Conduction and dielectric
losses were considered for microstrip lines with common iso-
tropic substrates and with different resistivities for the strip
conductor and the ground plane. Results show that attenuation
and dispersion distortions change (from the distortionless pulse)
by varying the strip width, substrate height, substrate dielectric
constant, pulse width, and pulse rise time.
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A Spectral Iterative Technique with
Gram-Schmidt Orthogonalization

PETER M. VAN DEN BERG aND WALTER J. GHIJSEN

Abstract —Iterative schemes based on the minimization of the integrated
square error are discussed. In each iteration a basis function is generated
in such a way that it is linearly related to the residual error of the previous
iteration. A complete orthogonalization of all of these basis functions leads
to an optimal convergent scheme for some choices of the basis functions.
In order to reduce the computer storage needed to store all of the basis
functions, we present an incomplete orthogonalization scheme that still
yields an efficient computational method. In this scheme 3 limited number
of basis functions has to be stored. Some numerical results with respect to
some representative field problems illustrate the performance of the vari-
ous versions of the iterative schemes suggested here.

I. INTRODUCTION

The spectral iterative technique (SIT), developed by Bojarski
[1] and Ko and Mittra [2], has been applied to a wide class of
radiation and scattering problems. Convergence problems arising
in the spectral iterative technique, which are serious at times,
have been eliminated by van den Berg [3] by minimizing the
integrated square error in the boundary conditions on the perti-
nent radiating or scattering object. The convergence has substan-
tially been improved by using all available functions of the
previous iteration in the minimization procedure of each iteration
(CST3-scheme [4]). In each iteration of the iterative schemes a
basis function is generated in such a way that it is linearly related
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to the residual error of the previous iteration. MacKay and
McCowen [5] have suggested a full orthogonalization of all basis
functions in order to improve the convergence in an optimum
way. This requires all basis functions to be stored in the com-
puter; hence sufficient computer memory must be available. The
latter authors therefore suggest that a complete orthogonalization
may not be necessary and that the number of basis functions to
be orthogonalized can be limited to a small number. However, in
this case, the convergence can decrease dramatically after a
number of iterations.

In the present paper we discuss an incomplete orthogonaliza-
tion scheme where we take into account a limited number of
basis functions generated in the last few iterations; however, in
contrast to [S], we also use the appropriate estimate of one of the
previous iterations as a function to which all the relevant basis
functions have to be orthogonalized. This maintains the speed of
convergence. Further, in one of the most simple forms, the latter
scheme turns out to be equivalent to the contrast-source-trunca-
tion technique CST3 [4]. The latter is a truly iterative technique,
because it needs the functions of the previous iteration only.

IL

We consider a field computation problem in terms of an
integral equation of the form [4]

[ K= x)1(x) di' = g(x), (1)
where D is the domain of observation. Then, (1) is equivalent to
Kf=g, @)

Further, we introduce the inner product of two functions f and g
as (the bar denotes a complex conjugate)

(/8= [ (x)s(x) dx (3)

while the norm of a function f is defined as ||f]| = (£, f)/%. We
further introduce the characteristic function y,(x)=1 when
x €D, and xp(x) =0 when x € D', where D’ is the subdomain
outside the domain D of observation.

Introducing the spatial Fourier transform of a function f as
f=F { 1}, the Fourier transform of the operator expression Kf of
(2) can be written as the product of the Fourier transforms
K= F{K(x)} and F{x,f}; thus the operator expression can be
written as

THE OPERATOR EQUATION

when x € D

when x € D.

Kf=F Y KF{xpf}}. 4)

I11. ITERATIVE APPROXIMATION WITH GRAM—SCHMIDT
ORTHOGONALIZATION

In our iterative approximation we construct a sequence of
functions { f,, n=0,1.2,3, - - - } such that the norm of the resid-
ual in the operator eq. (2),

ERR, = (r,,r,}?, withr, =Kf, — g &)

decreases with increasing » in an optimum way. The procedure

starts with an initial guess f, with the associated residual r,. At
each step of the iterative procedure, we write

fn=fn—1+anfnc’ n=1,2,3,--- (6)

where, in each step, f;i is a correction function and where the

complex parameter o, is chosen such that the error ERR, is
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